Note

On the Hermite Interpolation Polynomial

Hannu Väliaho
Department of Mathematics, University of Helsinki, Helsinki, Finland
Communicated by Oved Shisha

Received April 29, 1982; revised May 3, 1983

Theorem. Let $f:[a, b] \rightarrow \mathbb{R}$ be sufficiently many times differentiable, and let $x_{i} \in[a, b], m_{i} \in \mathbb{N}_{+}, i=1, \ldots, s$, be given. Then there exists a unique polynomial $r(x)$ of degree $<m:=m_{1}+\cdots+m_{s}$ (the Hermite interpolation polynomial) for which

$$
\begin{equation*}
r^{(i)}\left(x_{i}\right)=f^{(j)}\left(x_{i}\right), \quad i=1, \ldots, s, j=0, \ldots, m_{i}-1 \tag{1}
\end{equation*}
$$

There exist many proofs of this theorem, for example, Davis $[1$, Theorem 2.2.2] treats the problem in a more general setting. We present here an elementary inductive proof of the above theorem. The proof is constructive, i.e., it gives a method for constructing the Hermite interpolation polynomial.

Proof of the Theorem. Number the m conditions (1) in the indicated order $t=1, \ldots, m$. The proof is by induction on t. For $t=1$, the unique Hermite interpolation polynomial is $r(x)=f\left(x_{1}\right)$. We then assume the theorem to hold for $1, \ldots, t-1$ and establish it for t. Let $t>1$ be of the form $t=m_{1}+\cdots+m_{h-1}+k$, where $1 \leqslant k \leqslant m_{h}$. Any polynomial $r(x)$ of degree $<t$ can be expressed in the form

$$
\begin{equation*}
r(x)=p(x)+\lambda w(x) \tag{2}
\end{equation*}
$$

where $w(x)=\left(x-x_{1}\right)^{m_{1}} \cdots\left(x-x_{h-1}\right)^{m_{h-1}}\left(x-x_{h}\right)^{k-1}, p(x)$ is a polynomial of degree $<t-1$, and $\lambda \in \mathbb{R}$. From (2),

$$
\begin{equation*}
r^{(j)}(x)=p^{(j)}(x)+\lambda w^{(j)}(x) \tag{3}
\end{equation*}
$$

for any j. In order for $r(x)$ to be a Hermite interpolation polynomial of f satisfying the first t conditions there must be $r^{(j)}\left(x_{i}\right)=p^{(j)}\left(x_{i}\right)=f^{(j)}\left(x_{i}\right)$ for $i=1, \ldots, h-1 ; j=0, \ldots, m_{i}-1$ and, if $k>1$, also for $i=h ; j=0, \ldots, k-2$,
because $w^{(j)}\left(x_{i}\right)=0$ for these values of i and j. Thus in (2), $p(x)$ must be the unique Hermite interpolation polynomial of f satisfying the first $t-1$ conditions. It remains to determine λ so that $r^{(k-1)}\left(x_{h}\right)=f^{(k-1)}\left(x_{h}\right)$. By means of (3) we derive uniquely,

$$
\lambda=\frac{1}{w^{(k-1)}\left(x_{h}\right)}\left[f^{(k-1)}\left(x_{h}\right)-p^{(k-1)}\left(x_{h}\right)\right],
$$

which is well defined because $w^{(k-1)}\left(x_{h}\right) \neq 0$. With this λ, (2) yields the required Hermite interpolation polynomial $r(x)$.

Example. We construct the Hermite interpolation polynomial based on the data $x_{1}=1, x_{2}=2 ; m_{1}=4, m_{2}=3 ; f_{10}=1, f_{11}=-1, f_{12}=2, f_{13}=-6$; $f_{20}=3, f_{21}=4, f_{22}=-8$, where $f_{i j}=f^{(j)}\left(x_{i}\right)$, using an abbreviated method.

Denoting by $r_{t}(x)$ the Hermite interpolation polynomial satisfying the first t conditions, we obtain, by Taylor's theorem, $r_{4}(x)=$ $1-(x-1)+(x-1)^{2}-(x-1)^{3}$, and, according to the proof of the above theorem, $r_{7}(x)=r_{4}(x)+(x-1)^{4} q(x)$, where $q(x)$ is a polynomial of degree <3. We derive

$$
\begin{aligned}
& r_{7}(x)=1-(x-1)+(x-1)^{2}-(x-1)^{3}+(x-1)^{4} q(x) \\
& r_{7}^{\prime}(x)=-1+2(x-1)-3(x-1)^{2}+4(x-1)^{3} q(x)+(x-1)^{4} q^{\prime}(x) \\
& r_{7}^{\prime \prime}(x)=2-6(x-1)+12(x-2)^{2} q(x)+8(x-1)^{3} q^{\prime}(x)+(x-1)^{4} q^{\prime \prime}(x)
\end{aligned}
$$

With $x=2$, these equations yield in succession $q(2)=3, q^{\prime}(2)=-6$, $q^{\prime \prime}(2)=8$. Thus $q(x)=3-6(x-2)+4(x-2)^{2}$, and finally,

$$
r_{7}(x)=4 x^{6}-38 x^{5}+143 x^{4}-273 x^{3}+282 x^{2}-152 x+35 .
$$

References

1. P. J. Davis, "Interpolation and Approximation," Ginn (Blaisdell), Boston/New York/ Toronto/London, 1963.
2. H. Werner and R. Schaback, "Praktische Mathematik II," Springer-Verlag, Berlin/Heidelberg/New York, 1972.
